功能描述

A013 是一款高性能、电流模式 PWM 控制器。内置高压功率开关,最大程度上节约了产品的整体成本。A013 可工作于典型的反激电路拓扑中,构成简洁的 AC/DC 电源转换器。内建自供电电路,无需启动电阻和辅助绕组供电,极简的外围器件。

A013 控制输出频率大小,在输出功率较小时自动降低工作频率,从而实现了很低的待机功耗;内置开关管始终工作于临界饱和状态,可提高系统的工作效率,使系统可以轻松满足"能源之星"关于待机功耗和效率的认证要求。

当 A013 发生过压保护时,通过限制输出电压上升来防止光耦或反馈电路损坏引起的输出电压过高。同时,A013 还集成了过载、短路、过流、过温保护等功能,一旦发生保护,A013 会降低工作频率或关闭输出,以确保电源系统的安全性。

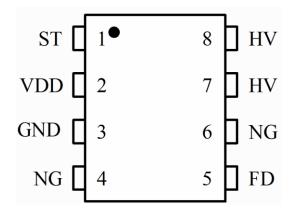
A013 采用 DIP-8 封装。

功能特性

- ▶ 内置 750V 高压开关管;
- ▶ 内置高压启动电路和自启动电路;
- ▶ 内建自供电电路,无需辅助绕组供电;
- ▶ 电流模式 PWM 控制;
- ▶ 轻负载时自动进入跳周期模式;
- ▶ 过载、短路、过流、过温及光耦失效保护电路;
- ▶ 待机功耗小于 0.15W;
- ▶ 频率抖动降低 EMI 滤波成本;

应用领域

- ➤ AC/DC 电源适配器;
- ➤ DVD/VCD 电源;


- ▶ 机顶盒电源;
- ▶ 手机快速充电器

推荐功率*

输入电压范围	典型应用		
85V~265V	5V2A/9V1.2A/12V1A		
180V~240V	5V2A/9V1.7A/12V1.2A		

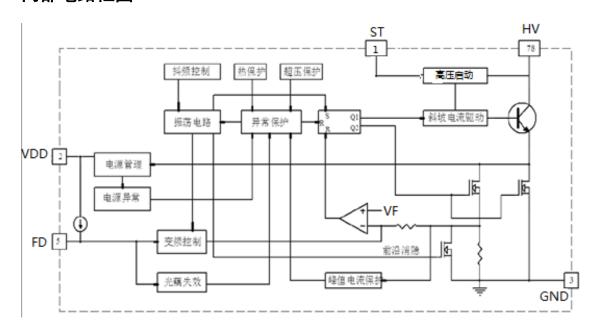
注:上述数据为实验室数据,具体应用可能存在误差。

引脚图示

引脚定义

引脚号	引脚名	描述
1	ST	上电启动引脚,此引脚悬空处理
2	VDD	供电引脚,外部连接一个 22uF~68uF 的贮能电容对地
3	GND	接地引脚
4, 6	NG	空引脚,内部无电气连接
5	FD	反馈控制端引脚,接 100nF 电容对地,光耦对地控制输出
7, 8	HV	输出引脚,连接 A013 内高压功率管,外部与开关变压器相连

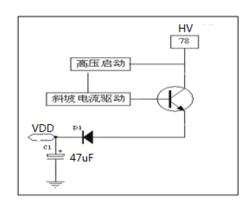
绝对最大额定值


参数	数值
供电电压 VDD	-0.3 到 8V
供电电流 VDD	100mA
引脚电压	-0.3V 到 VDD+0.3V
功率管耐压	-0.3V 到 750V
功率管电流	1.5A
峰值电流	800mA
总耗散功率	1000mW
工作温度	-20℃到+125℃
存储温度	-55℃到+150℃
焊接温度(焊接,5秒)	+280℃

注意:超过绝对最大额定值,可能对设备造成永久损坏。这些仅是极限参数,器件工作在这些或其它超过 "推荐工作条件"的状态都不是被推荐的。长时间工作在绝对最大额定状态会影响器件可靠性。

电气特性

项目	测试条件	最小值	典型值	最大值	单位
电源电压 VDD	AC 输入 85V~265V	4	5	6	V
启动电压 VDD	AC 输入 85V~265V	4.8	5	5.2	V
关闭电压 VDD	AC 输入 85V~265V	3.6	4	4.2	V
电源电流	VDD=5V, FD=2.2V	10	20	30	mA
启动时间	AC 输入 85V			500	mS
HV 保护电压	L=1.2mH	460	480	500	V
功率管耐压	LHV=1mA	600			V
功率管最大电流	VDD=5V, FD=1.6V~3.6V	600	660	700	mA
峰值电流保护	VDD=5V, FD=1.6V~3.6V	650	720	800	mA
震荡频率	VDD=5V, FD=1.6V~2.8V	50	65	70	KHz
变频频率	VDD=4.6V, FD=2.8V~3.6V	0.05		65	KHz
抖频步进频率	VDD=4.6V, FD=1.6V~2.8V	0.8	1	1.2	KHz
温度保护	VDD=4.6V, FD=1.6V~3.6V	125	130	135	$^{\circ}$
PWM 占空比	VDD=4.6V, FD=1.6V~3.6V	5		50	%
控制电压 FD	AC 输入 85V~265V	1.6		3.6	V


内部电路框图

工作原理描述

▶ 启动电路

当外部电源上电时,直流高压经开关变压器传至 A013 的 HV 端 (7,8 引脚),后经内置启动电路将启动电流送至开关管 Q1 的基极,通过开关管 Q1 的电流放大进入电源管理电路,经 D1 为 VDD 外部电容 C1 充电。当 VDD 的电压逐步上升至 5V 时,FD 开始逐步上升,当 FD 电压达到 1.2V 后,振荡器起振,电路开始工作。

▶ 正常工作状态

电路完成启动后,振荡器开始工作,触发器的 Q1, Q2 输出高电平,控制端 FD 电压 经斜坡补偿后与取样电阻上的电压相加后与基准电压相比较,当电压高于基准电压时比较器 输出低电平,触发器的 Q1, Q2 输出低电平,高压三极管关断,HV 端电压上升,电路进入反激状态,在下一个振荡周期到时,电路将重新导通工作。

➤ FD 控制方式

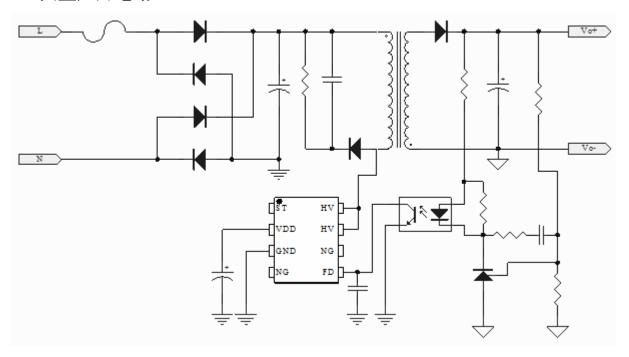
FD 引脚外部应当连接一只电容,以平滑 FD 电压,外接电容会影响到电路的反馈瞬态特性及电路的稳定性,典型应用可在 100nF; 当 FD 电压高于 1.6V 而小于 3.6V 时,电路将以 65KHz 的频率工作,当 FD 电压高于 1.2V 而小于 1.6V 时,电路将随着 FD 的电压下降而降低频率,当 FD 电压低于 1.2V 时,电路将停止工作。

▶ 基极斜坡电流驱动方式

为了降低 A013 的耗能及提高电路的效率,内部为高压三极管的基极提供的电流采用了斜坡电流驱动技术,当开关电流 IS 为 0 时,基极电流约为 I₁,随着开关电流的逐步增大,基极电流也逐步增大,当开关电流为 600mA 时,基极电流为 I₂。

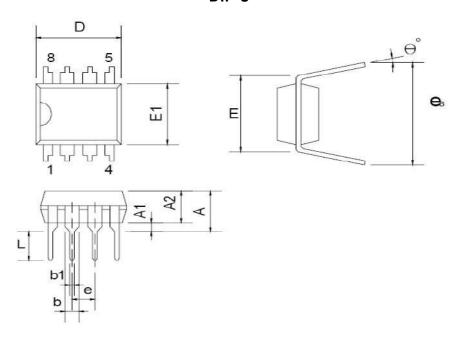
▶ 频率抖动

为了能满足 EMC 的要求,A013 内设有一个抖频电路,PWM 的频率将以 65KHz 的频率为中心,以 1KHz 的步进在频率点上运行,这样有效的降低了 EMC 的设计的复杂度及费用。


▶ 保护方式

A013 的温度达到 130℃时,A013 将进行重新启动,直至 A013 的温度降低到 120℃以下,A013 才会重新进入正常工作状态;因外部的某种异常引起的电流过大时,当电流达到内置电压基准阈值时,A013 将进行重新启动;因外部的某种异常引起的电源电压高于 6V时,或电源电压低于 4V时,A013 将进行重新启动;在完成启动后,A013 内部设定了一个电流的上升斜率检测电路,当外部的电压超高或者开关变压器的失效,都会引起电流的斜率变化,保护电路将会对电路进行重新启动,这样保证了高压三极管的安全,同时对低频的浪涌电压进行了有效的保护。

在电感不变时,在一个固定的时间上检测内置电阻的电压可计算出流过三极管瞬时电流,


A013 利用该原理检测 IS 电流,当 IS 电压小于 0.14V 时,电路正常工作,当 IS 电压大于 0.14V 时,A013 进入异常保护;同理,当外部的电感器的电感量变小,也会让 A013 进入异常保护;这样即可以保护输入电压过高引起的开关管的击穿,也可以保护因外部变压器的磁饱和或者短路引起的电感量下降导致 IS 电流过大,引起 A013 的损坏。

典型应用电路

封装信息

DIP-8

符号	毫米		英寸			
	最小值	典型值	最大值	最小值	典型值	最大值
Α	SP 52	- 8	5.334		12	0.210
A1	0.381	*	***	0.015	1	
A2	3.175	3.302	3.429	0.125	0.130	0.135
b	9	1.524			0.060	
b1	80	0.457	1		0.018	
D	9.017	9.271	10.160	0.355	0.365	0.400
E		7.620	47/19/4/09/09/3	AND SEC.	0.300	
E1	6.223	6.350	6.477	0.245	0.250	0.255
E		2.540			0.100	
L	2.921	3.302	3.810	0.115	0.130	0.150
e _B	8.509	9.017	9.525	0.335	0.355	0.375
θ°	0°	7°	15°	0°	7°	15°

申明: 规格书如有更新, 恕不另行通知。请在使用本IC之前更新规格书至最新版。